@SARAHAI Feel it! Hear it!

@SARAHAI As the world today keeps going faster and faster, Just take a moment to relax, to really Feel the music, to Hear the music. You can feel the emotion poured into it. The Love that has been placed inside this song. Is just something to admire.<3 from SARAHAI

Read More @SARAHAI Feel it! Hear it!

Simulacrum Persona Skirting Dick Tripover ⦈⟟∁⋉ ⊩

Simulacrum Persona Skirting Dick Tripover ⦈⟟∁⋉ ⊩ from SARAHAI Simulacrum Persona Skirting Dick Tripover ⦈⟟∁⋉ ⊩ http://boards.4chan.org/x/thread/21382640 {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.} {\displaystyle f(z)=z^{2}=(x+iy)^{2}=x^{2}+2ixy-y^{2}=x^{2}-y^{2}+2ixy,\ } {\displaystyle u(x,y)=\operatorname {re} ;f(z)=\Re f(z),} {\displaystyle v(x,y)=\operatorname {im} ;f(z)=\Im f(z).} {\displaystyle v(x,y)=\operatorname {im} ;f(z)=\Im f(z).} \int\frac{\Gamma^{x}(n)}{x^{n}}\mbox{d}x=\left|\begin{array}{ll}u=\Gamma^{x}(n) & v’=\frac{1}{x^{n}} \ u’=\Gamma^{x}(n)\ln(\Gamma(n)) & v=\frac{1}{x^{n-1}(1-n)} \end{array}\right|=\frac{\Gamma^{x}(n)}{x^{n-1}(1-n)}-\frac{\ln(\Gamma(n))}{1-n}\int\frac{\Gamma^{x}(n)}{x^{n-1}}\mbox{d}x 2: \int\frac{\Gamma^{x}(n)}{x^{n-1}}\mbox{d}x=\left|\begin{array}{ll}u=\Gamma^{x}(n) & v’=\frac{1}{x^{n-1}} \ u’=\Gamma^{x}(n)\ln(\Gamma(n)) […]

Read More Simulacrum Persona Skirting Dick Tripover ⦈⟟∁⋉ ⊩